

Report No.: DL-2020104171E

TEST REPORT

Applicant:	Shenzhen Feixing Technology Co., Ltd.
Address:	Shenzhen qianhaishenganghezuoqu qianwanyiluyihao Adong201shi
Manufacturer:	Shenzhen Feixing Technology Co., Ltd.
Address:	Shenzhen qianhaishenganghezuoqu qianwanyiluyihao Adong201shi
EUT:	Mini UPS
Trade Mark:	Shanqiu
Model Number:	FX 5-12 FX 5-12B, FX 5-12P, FX 5-12 Pro, FX 5-12C, FX 5-12V
Date of Receipt:	Oct. 15, 2020
Test Date:	Oct. 15, 2020 - Oct. 20, 2020
Date of Report:	Oct. 20, 2020
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.
Address:	101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China
Applicable Standards:	EN 55032:2015/AC:2016 EN 61000-3-2:2019, EN 61000-3-3:2013+A1:2019 EN 55035:2017/AC:2019 EN 61000-4-2:2009, EN 61000-4-3: 2019, EN 61000-4-4:2012, EN 61000-4-5:2014+A1:2017, EN 61000-4-6:2014/AC:2015, EN 61000-4-8:2010, EN 61000-4-11:2019
Test Result:	Pass
Report Number:	DL-2020104171E
Prepared by(Engine	er): Alisa Song
Reviewer(Superviso	r): Nico Zou
Approved(Manager)	
	"pproved

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

TABLE OF CONTENT

-	Test Report Declaration						Page
1	VERSION				······································	······	
2							
3	- ,						
	3.1 Description of Device (EUT)		<u></u>	·····	X		
	3.2 Tested System Details			. <u> </u>	<u>, 6</u> °,		5
	3.3 Test Mode Description	Ó.	× į		\sim	-0	5
	3.4 Test Uncertainty		<u></u>	<u>, 6</u>			5
4		<u> </u>	<u>````````````````````````````````</u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>	6
5	CONDUCTED EMISSION TES	T			<u>i</u>	\diamond	
	5.1 Block Diagram Of Test Setup	\sim	CON.		О ^с	\diamond	
	5.2 Test Standard and Limit	^	Č. A	<u> </u>	<u> </u>		
	5.3 EUT Configuration on Test						
	5.4 Operating Condition of EUT						
	5.5 Test Procedure		<u></u>	<u>e</u> ø	·····		9
	5.6 Test Result			ş	<u>, </u>	<u> </u>	9
6	. RADIATION EMISSION TEST		<u>í</u>	<u> </u>		`	12
	6.1 Block Diagram of Test Setup			<u></u>	0		
	6.2 Test Standard and Limit		<u>, 0</u>			, 	13
	6.3 EUT Configuration on Test						
	6.4 Operating Condition of EUT						
	6.5 Test Procedure						
	6.6 Test Result						
7	. HARMONIC CURRENT EMISS						
	7.1 Block Diagram of Test Setup		<u> </u>	\sim	S``	·····	17
	7.2 Test Standard	<u> </u>	,Q ^{0**}			<u>, </u>	
	7.3 Operating Condition of EUT			8			17
	7.4 Test Procedure7.5 Test Results	<u>, , , , , , , , , , , , , , , , , , , </u>			\sim		
	7.5 Test Results						
8	. VOLTAGE FLUCTUATIONS &		TEST	G			18
	8.1 Block Diagram of Test Setup		X	`	<u>6</u> 8 ⁵		
	8.2 Test Standard	<u> </u>	,0°''		<u> </u>		
	8.3 Operating Condition of EUT						
	8.4 Test Procedure						
	8.5 Test Results		·····	<u> </u>		<u>.</u>	
9	. IMMUNITY TEST OF GENERA	L THE PE	RFORMA	NCE CR	TERIA		
1	0. ELECTROSTATIC DISCHAR	RGE IMMU	NITY TES	т	<u></u>		
	10.1 Block Diagram of Test Setup	Q.	0 ⁰¹		- A	\sim	20
	10.2 Test Standard	\sim				<u></u>	

5	Shenzhen DL Testing Technology Co., Ltd.	Report No.: DL-2020104171E
CO		A C
10.3	Severity Levels and Performance Criterion	
10.4	Test Procedure	
10.5	Test Results	
. RF	FIELD STRENGTH SUSCEPTIBILITY TEST	
11.1		
11.2	Test Standard	
11.3	Severity Levels and Performance Criterion	
11.4	Test Procedure	
11.5	Test Results	
2. EĽ	ECTRICAL FAST TRANSIENT/BURST IMMUNITY TES	ST24
12.4		
12.5		
s. su		
-		
	Block Diagram of EUT Test Setup	
16.3		
16.5		
. SE	TUP PHOTOGRAPHS	20 20
	10.3 10.4 10.5 . RF 11.1 11.2 11.3 11.4 11.5 2. EL 12.1 12.2 12.3 12.4 12.5 3. SU 13.1 13.2 13.3 13.4 13.5 3. SU 13.1 13.2 13.3 13.4 13.5 5. SU 13.1 13.2 13.3 13.4 13.5 5. SU 14.1 14.2 14.3 14.4 14.5 5. SU 15.1 15.2 15.3 15.4 15.5 5. VO 16.1 16.2 16.3 16.4 16.5	10.3 Severity Levels and Performance Criterion 10.4 Test Procedure 10.5 Test Results RF FIELD STRENGTH SUSCEPTIBILITY TEST 11.1 Block Diagram of Test Setup 11.2 Test Standard 11.3 Severity Levels and Performance Criterion 11.4 Test Procedure 11.5 Test Results ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST 12.1 Block Diagram of EUT Test Setup 12.2 Test Standard 12.3 Severity Levels and Performance Criterion 12.4 Test Procedure 12.5 Test Results SURGE TEST Surget Test 13.1 Block Diagram of EUT Test Setup 13.2 Test Standard 13.3 Severity Levels and Performance Criterion 13.4 Test Procedure 13.5 Test Result NJECTED CURRENTS SUSCEPTIBILITY TEST 14.1 Block Diagram of EUT Test Setup 14.2 Test Standard 15.3 Severity Levels and Performance Criterion 14.4 Test Procedure 14.5

Report No.: DL-2020104171E

1. VERSION

Version No.	Date	Description
00	Oct. 20, 2020	Original
Cor T		
d'and		

2. TEST SUMMARY

	EMC Emission			
Standard	Test Item	Limit	Result	Remarl
	Conducted Emission at power ports	Class B	PASS	\sim
	Conducted Emission at LAN port	Class B	N/A	
EN 55032	Radiated Emission below 1GHz	Class B	PASS	X
	Radiated Emission above 1GHz	Class B	N/A	Ç [©] .
EN 61000-3-2	Harmonic Current Emission	Class A or D	N/A NOTE (2)	C ^e
EN 61000-3-3	Voltage Fluctuations & Flicker	<u> </u>	N/A	ON
	EMC Immunity			
Section EN 55035	Test Item	Performance Criteria	Result	Remark
EN 61000-4-2	Electrostatic Discharge	O BO	PASS	N. N.
EN 61000-4-3	RF electromagnetic field	A S	PASS	, Co
EN 61000-4-4	Fast transients	В	N/A	Q. C
EN 61000-4-5	Surges	В	N/A	OV.
EN 61000-4-6	Injected Current	A X	N/A	
EN 61000-4-8	Power Frequency Magnetic Field	A	PASS	
EN 61000-4-11	Volt. Interruptions Volt. Dips	B / C / C ^{NOTE (3)}	N/A	- of

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3) Voltage dip: 100% reduction Performance Criteria B
 - Voltage dip: 30% reduction Performance Criteria C
 - Voltage Interruption: 100% Interruption Performance Criteria C
- (4) Test Facility: Shenzhen DL Testing Technology Co., Ltd.
- Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Report No.: DL-2020104171E

3. GENERAL INFORMATION

3.1 Description of Device (EUT)

EUT	: Mini UPS
Trade Mark	: Shanqiu
Model Number	. FX 5-12 FX 5-12B, FX 5-12P, FX 5-12 Pro, FX 5-12C, FX 5-12V
Model difference	: The product's different for model number and appearance color.
	Battery: 3.6V 8800mAH Mirco Input: 5V=== 2A
Power Supply	: DC Input:12V===3A USB Output: 5V===2A DC Output: 12V===2A, 9V===2A, 5V===2A

Working Frequency : Below 108MHz

Note: FX 5-12 was selected as the test model and the data's have been recorded in this report.

3.2 Tested System Details

None.

3.3 Test Mode Description

Mode1. On Mode

3.4 Test Uncertainty

Conducted Emission Uncertainty : ±2.57dB

Radiated Emission Uncertainty : ±4.51dB

4. TEST INSTRUMENT USED

For Conducted Emission Test (843 Shielded Room)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
843 Shielded Room	ChengYu	843 Room	843	Nov. 25, 2019	Nov. 24, 2022
EMI Receiver	R&S	ESR	101421	Dec. 06, 2019	Dec. 05, 2020
LISN	R&S	ENV216	102417	Dec. 06, 2019	Dec. 05, 2020
ISN T8	Schwarzbeck	NTFM 8158	101135	Dec. 06, 2019	Dec. 05, 2020
ISN T5	Schwarzbeck	NTFM 8158	101136	Dec. 06, 2019	Dec. 05, 2020
843 Cable 1#	ChengYu	CE Cable	○ 001	Dec. 06, 2019	Dec. 05, 2020

For Radiated Emission Test (966 chamber)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	Nov. 25, 2019	Nov. 24, 2022
Spectrum Analyzer	Agilent	E4408B	MY50140780	Dec. 06, 2019	Dec. 05, 2020
EMI Receiver	R&S	ESRP7	101393	Dec. 06, 2019	Dec. 05, 2020
Amplifier	Schwarzbeck	BBV9743B	00153	Dec. 06, 2019	Dec. 05, 2020
Amplifier	EMEC	EM01G8GA	00270	Dec. 06, 2019	Dec. 05, 2020
Broadband Trilog Antenna	Schwarzbeck	VULB9162	00306	Dec. 07, 2019	Dec. 06, 2020
Horn Antenna	Schwarzbeck	BBHA9120D	02139	Dec. 07, 2019	Dec. 06, 2020
966 Cable 1#	ChengYu	966	004	Dec. 06, 2019	Dec. 05, 2020
966 Cable 2#	ChengYu	966	003	Dec. 06, 2019	Dec. 05, 2020

For Harmonic & Flicker Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Harmonics, Flicker & power Analyser	LAPLACE INSTRUMENTS	AC2000A	311370	Dec. 06, 2019	Dec. 05, 2020
AC Power Supply	MToni	HPF5010	633659	Dec. 06, 2019	Dec. 05, 2020

For Electrostatic Discharge Immunity Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
ESD Tester	SCHLODER	SESD 230	17352	Dec. 06, 2019	Dec. 05, 2020

Shenzhen DL Testing Technology Co., Ltd.

For RF Field Strength Susceptibility Test (Keyway --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Signal Generator	🔬 HP 🔷	8648A	3625U00573	Sep. 26, 2019	Sep. 26, 2020
Amplifier	A&R	500A100	17034	Sep. 26, 2019	Sep. 26, 2020
Amplifier	A&R	100W/1000M1	17028	Sep. 26, 2019	Sep. 26, 2020
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Sep. 26, 2019	Sep. 26, 2020
Isotropic Field Probe	A&R	FP2000	16755	Sep. 26, 2019	Sep. 26, 2020
Antenna	EMCO	3108	9507-2534	Sep. 26, 2019	Sep. 26, 2020
Log-periodic Antenna	A&R	AT1080	16812	Sep. 26, 2019	Sep. 26, 2020

For EFT /B, Surge, Voltage Dips Interruptions Test (EMS --- site)

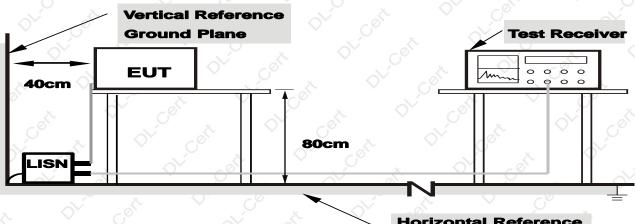
Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Transient Comprehensive Immunity Test System	Graphtec	HVIP16T+HCO MPACT 5	192501+192202	Dec. 06, 2019	Dec. 05, 2020
Coupling Clamp	HTEC	001	0001	Dec. 06, 2019	Dec. 05, 2020

For Injected Currents Susceptibility Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
C/S Test System	LIONCEL	RIS-6091-85	0191101	Dec. 06, 2019	Dec. 05, 2020
CDN CON	LIONCEL	CDN-M2-16	0191001	Dec. 06, 2019	Dec. 05, 2020
CDN	LIONCEL	CDN-M3-16	0191002	Dec. 06, 2019	Dec. 05, 2020
Injection Clamp	Frankonia	EMCL-20	18101728-0108	Dec. 06, 2019	Dec. 05, 2020

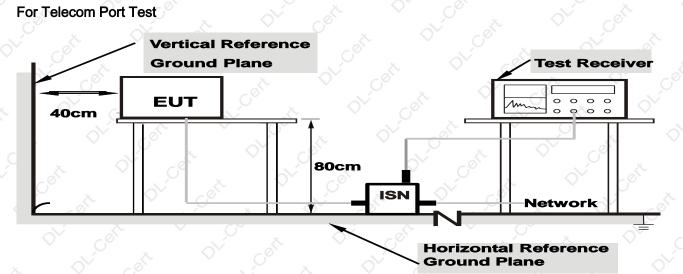
For Magnetic Field Immunity Test (EMS --- site)

Equipment	Manufacturer	Model	Serial	Last Cal.	Next Cal.
Magnetic field Test System	LIONCEL	PMF-801C-C/ PMF-801C-T	190401	Dec. 06, 2019	Dec. 05, 2020



Report No.: DL-2020104171E

5. CONDUCTED EMISSION TEST


5.1 Block Diagram Of Test Setup

For Mains Terminals Test

Horizontal Reference Ground Plane

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Note: 1.Support units were connected to second LISN. 2.Both of ISNs are 80 cm from EUT and at least 80 cm from other units and other metal planes

5.2 Test Standard and Limit

EN 55032

For Mains Terminals Test			For Telecom Port Test			
Frequency MHz	Limits dB(µV)		Frequency	Limits dB(µV)		
	Quasi-peak Level	Average Level	MHz	Quasi-peak Level	Average Level	
0.15~0.50	66 ~ 56*	55 ~ 46*	0.15~0.50	84 ~ 74*	74 ~ 64*	
0.50~5.00	_× 56 💉	46	0.50~30.00	74	64	
5.00~30.00	60	50			15	

Notes: 1. *Decreasing linearly with logarithm of frequency. 2. The lower limit shall apply at the transition frequencies.

5.3 EUT Configuration on Test

The following equipment's are installed on conducted emission test to meet EN 55032 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

5.4 Operating Condition of EUT

5.5.1 Setup the EUT and simulators as shown in Section 5.1. 5.5.2 Turn on the power of all equipments.

5.5.3 Let the EUT work in test modes and test it.

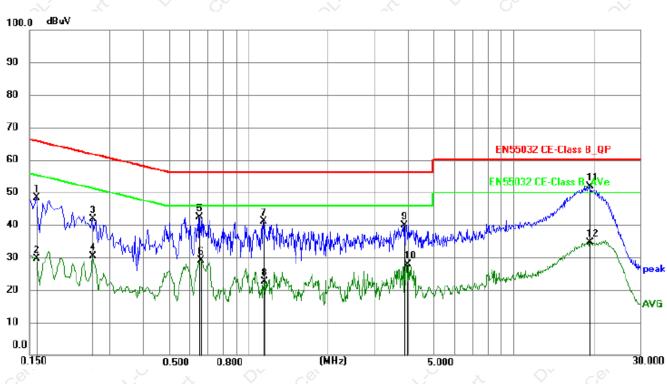
5.5 Test Procedure

The EUT is put on the table and connected to the AC mains through a Artificial Mains Network (AMN) or ISN. This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN 55032** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESR) is set at 10KHz

The frequency range from 150 KHz to 30 MHz is investigated.

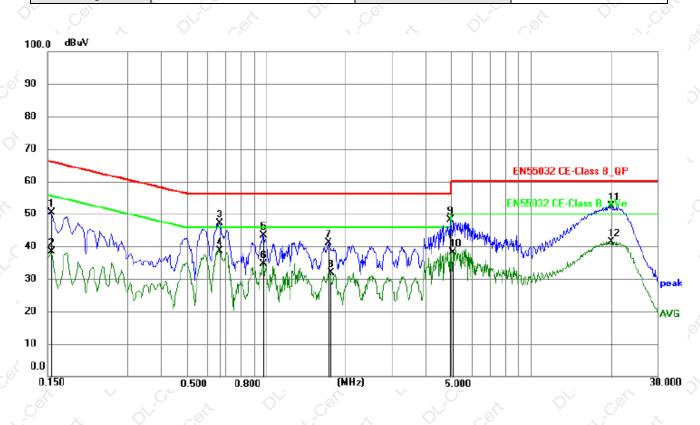
5.6 Test Result


PASS

Please refer to the following page.

Shenzhen DL	Testing	Technology	Co., L	td.
-------------	---------	------------	--------	-----

Conducted Emission Test Data							
Temperature:	24.5 ℃	Relative Humidity:	54%				
Pressure:	1009hPa	Phase :	Line				
Test Voltage:	AC 230V/50Hz	Test Mode:	ON Mode				
) <u> </u>		C. S.					

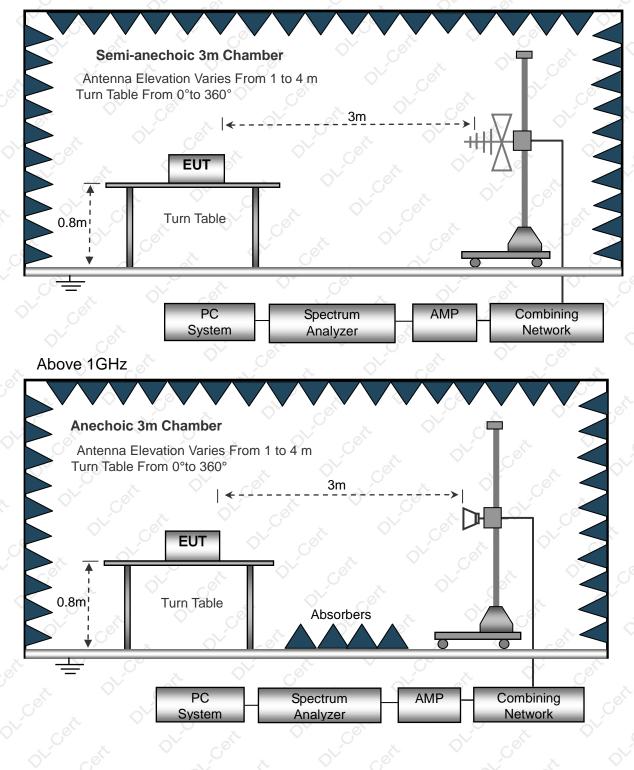


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1590	37.87	10.51	48.38	65.52	17.14	QP
2	0.1590	19.22	10.51	29.73	55.52	25.79	AVG
3	0.2580	31.44	10.51	41.95	61.50	19.55	QP
4	0.2580	19.88	10.51	30.39	51.50	21.11	AVG
5	0.6539	31.97	10.43	42.40	56.00	13.60	QP
6	0.6582	18.71	10.43	29.14	46.00	16.86	AVG
7	1.1353	30.87	10.24	41.11	56.00	14.89	QP
8	1.1532	12.46	10.24	22.70	46.00	23.30	AVG
9	3.8759	29.70	10.30	40.00	56.00	16.00	QP
10	3.9839	17.60	10.31	27.91	46.00	18.09	AVG
11	19.4280	41.01	10.80	51.81	60.00	8.19	QP
12	19.4280	23.73	10.80	34.53	50.00	15.47	AVG

Shenzhen DL	Testing	Technology	Co., Lt	d.
-------------	---------	------------	---------	----

		\bigcirc° \bigcirc°						
Conducted Emission Test Data								
Temperature:	24.5 °C	Relative Humidity:	54%					
Pressure:	1009hPa	Phase :	Neutral					
Test Voltage:	AC 230V/50Hz	Test Mode:	ON Mode					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1544	39.88	10.51	50.39	65.76	15.37	QP
2	0.1544	27.84	10.51	38.35	55.76	17.41	AVG
3	0.6673	36.70	10.42	47.12	56.00	8.88	QP
4	0.6673	28.16	10.42	38.58	46.00	7.42	AVG
5	0.9778	33.06	10.24	43.30	56.00	12.70	QP
6	0.9778	24.40	10.24	34.64	46.00	11.36	AVG
7	1.7203	30.94	10.25	41.19	56.00	14.81	QP
8	1.7474	21.56	10.25	31.81	46.00	14.19	AVG
9	4.9694	37.77	10.33	48.10	56.00	7.90	QP
10	5.0774	27.91	10.34	38.25	50.00	11.75	AVG
11	20.1119	41.48	10.81	52.29	60.00	7.71	QP
12	20.1119	30.62	10.81	41.43	50.00	8.57	AVG
\bigcirc [*]	C.O.		X V	C.O.		~ ~	V. 6°



Report No.: DL-2020104171E

6. RADIATION EMISSION TEST

6.1 Block Diagram of Test Setup

Below 1GHz

6.2 Test Standard and Limit

EN 55032

Below 1GHz

Equipment	Equipment Distance		Limit values dB(µV/m)		
type	(Meters)	MHz	Quasi-peak		
A O	Q [©] `	≤1 000	Fundamental 60		
FM receivers		30 to 230	Harmonics 52		
FINITECEIVEIS		230 to 300	Harmonics 52	~	
ON COL	3	300 to 1 000	Harmonics 56	Š	
	× V	30 to 300	40	Ç	
Other	all a	300 to 1 000	47		
\sim \sim	G		V G		

Above 1GHz

Frequency MHz	Distance (Meters)	Field Strengths Limits dB(μV)/m	Detector
1000~3000	3	76.0	PEAK
1000~3000	× 3° °	56.0	AVERAGE
3000~6000	3	80.0	PEAK
3000~6000	° 3	60.0	AVERAGE

Remark:

(1) The smaller limit shall apply at the cross point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

6.3 EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 5.3.

6.4 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 5.4 except the test set up replaced as Section 6.2.

6.5 Test Procedure

1) The radiated emissions test was conducted in a semi-anechoic chamber.

2) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground

reference plane by 0.1m of insulation.

3) Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.

4) The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

5) The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz.

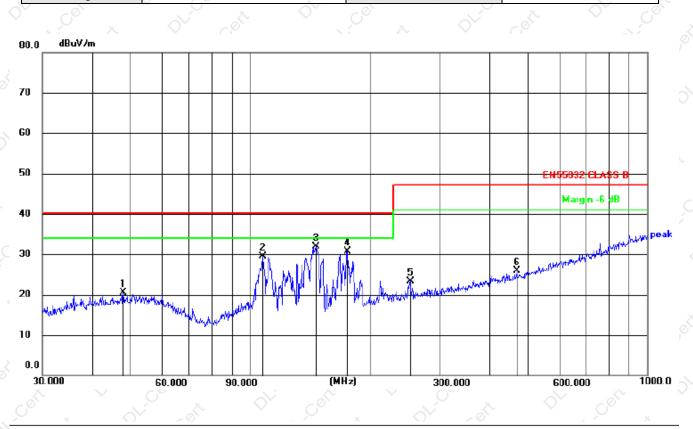
6) The frequency range from 30MHz to 1000MHz is checked.

6.6 Test Result

PASS Please refer to the following page.

Shenzhen DL	Testing	Technology	Co., Ltd.	
-------------	---------	------------	-----------	--

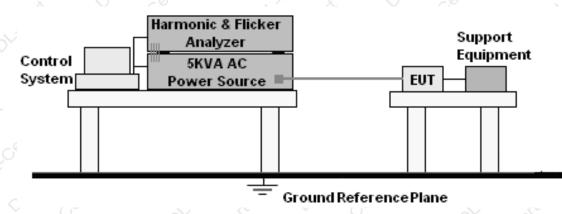
		04 5 °C	Radia		sion Test D		E 40/	~
	erature:	24.5 ℃ 1009hPa	O^{\vee}	()			54% Horizontal	- <u>, c ⁰` , , , , , , , , , , , , , , , , , , ,</u>
	Voltage:	DC 3.6V	~ ~	S cos	Test Mode:	•	ON Mode	V Cer
0.0	dBuV/m	00 3.00	27 27	Q1.C				Que de
\vdash								
\vdash							EN550	32 CLASS B
				3 4			Ma	argin -6 dB
\vdash			2				6	whether the setting pe
		1			₩ L.	stand with the stand with the stand	whether and the former	Marine
w	Manualitation	Mar Marine Marine		<u>''</u>	Hun the per themate	HAL WARNING		
ŀ			Kerkenken (* 1					
.0								


N	0.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	Comment	
	1		53.1313	34.57	-13.94	20.63	40.00	-19.37	QP		0
	2	ļ	108.2667	51.34	-16.60	34.74	40.00	-5.26	QP		
	3	ļ	152.1297	57.71	-18.79	38.92	40.00	-1.08	QP		
	4	*	167.8243	57.40	-17.91	39.49	40.00	-0.51	QP		
	5		329.0390	36.45	-12.29	24.16	47.00	-22.84	QP		
-	6		564.6389	35.98	-7.46	28.52	47.00	-18.48	QP		,

Web:www.dl-cert.com

Report No.: DL-2020104171E

		$O^{\vee} = O^{\vee}$						
Radiation Emission Test Data								
Temperature:	24.5 °C	Relative Humidity:	54%					
Pressure:	1009hPa	Polarization :	Vertical					
Test Voltage:	DC 3.6V	Test Mode:	ON Mode					


No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		0
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	Comment	
1		47.9940	34.20	-13.78	20.42	40.00	-19.58	QP		Ģ
2		107.5101	45.93	-16.52	29.41	40.00	-10.59	QP		1
3	*	146.3735	50.61	-18.77	31.84	40.00	-8.16	QP		
4		176.2686	48.09	-17.43	30.66	40.00	-9.34	QP		
5	,	252.9482	37.16	-13.93	23.23	47.00	-23.77	QP		
6	;	468.8762	35.29	-9.35	25.94	47.00	-21.06	QP		à

Report No.: DL-2020104171E

7. HARMONIC CURRENT EMISSION TEST

7.1 Block Diagram of Test Setup

7.2 Test Standard

EN 61000-3-2

7.3 Operating Condition of EUT

Setup the EUT as shown in Section 5.1. Turn on the power of all equipments. Let the EUT work in test mode and test it.

7.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

7.5 Test Results

The EUT is powered by DC, no requirements for this item.

Report No.: DL-2020104171E

8. VOLTAGE FLUCTUATIONS & FLICKER TEST

8.1 Block Diagram of Test Setup

Same as Section 7.1.

8.2 Test Standard

EN 61000-3-3

8.3 Operating Condition of EUT

Same as Section 7.3. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

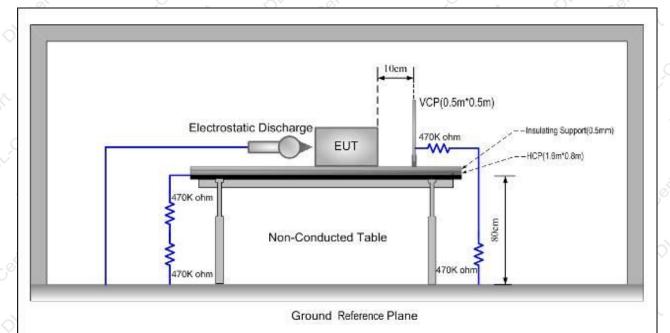
Flicker Test Limit	Corr in the
Test items	Limits
Pst	1.0
dc of the second	3.3%
Tmax	4.0%
dt of of of	Not exceed 3.3% for 500ms

8.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

8.5 Test Results

The EUT is powered by DC, no requirements for this item.


9. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA

Product Standard	EN 55035
oh cert oh	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the
Or Cor	manufacturer when the equipment is used as intended. The performance
CRITERION A	level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
O ^V C ^o ^{(V} V	During the application of the disturbance, degradation of performance is
	allowed. However, no unintended change of actual operating state or stored
	data is allowed to persist after the test.
	After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the
CRITERION B	equipment is used as intended. The performance level may be replaced by a permissible loss of performance.
	If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may
	be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	Loss of function is allowed, provided the function is self-recoverable, or can
	be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.
	Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

10. ELECTROSTATIC DISCHARGE IMMUNITY TEST

10.1 Block Diagram of Test Setup

10.2Test Standard

EN 55035, EN 61000-4-2

10.3 Severity Levels and Performance Criterion

Severity Level: 3 / Air Discharge:±8KV Level: 2 / Contact Discharge:±4KV Performance criterion : B

10.4Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from

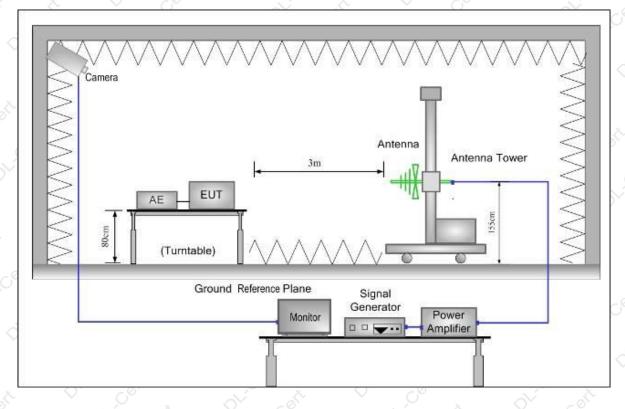
the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

10.5Test Results

PASS

Please refer to the following page.


		Electrost	atic Disch	arge Test Data		
Tempera	ature:	25.1 ℃	U.	Humidity:		6
Power Su	pply :	DC 3.6\	60	Test Mode:	ON M	ode
	0	\sim	Cort		\times 0^{\vee}	con
Discharge Method	Discharge Position		Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Required Level	Result
	Conduct	ve Surfaces	4	25	S B ⊖	Pass
Contact Discharge	Indirect [Discharge HCP	<u> </u>	25	BO	Pass
Discillarge	Indirect [Discharge VCP	4	25	В	Pass
Air Discharge	Slots, Apertures, and Insulating Surfaces		8	10	В	Pass

Report No.: DL-2020104171E

11. RF FIELD STRENGTH SUSCEPTIBILITY TEST

11.1 Block Diagram of Test Setup

11.2 Test Standard

EN 55035, EN 61000-4-3

11.3 Severity Levels and Performance Criterion

Severity Level 2, 3V / m Performance criterion: A

11.4 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

Report No.: DL-2020104171E

All the scanning conditions are as follows:

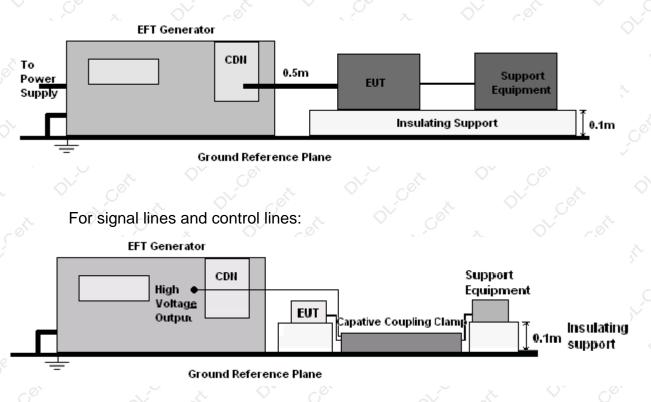
Condition of Test Fielded Strength Radiated Signal Scanning Frequency Dwell time of radiated Waiting Time Remarks 3 V/m (Severity Level 2) Modulated 80 – 6000 MHz 0.0015 decade/s 1 Sec.

11.5 Test Results

PASS

Please refer to the following page.

R/S Test Data								
Temperature:	25.1℃	Humidity:	55%					
Power Supply :	DC 3.6V	Test Mode:	ON Mode					
Criterion:	Α 🔨	Steps	1 %					
		-01						


Frequency (MHz)	Position	Field Strength (V/m)	Required Level	Result
80 – 1000 1800 2600 3500 5000	Front, Right, Back, Left	3.Cet	Adrost Dr	Pass
Note: N/A	36	,	or cor	

12. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

12.1 Block Diagram of EUT Test Setup

For input a.c. / d.c. power port:

12.2 Test Standard

EN 55035, EN 61000-4-4

12.3 Severity Levels and Performance Criterion

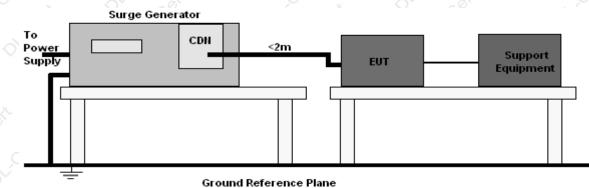
Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Performance criterion: B

12.4 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.


12.5 Test Results

The EUT is powered by DC, no requirements for this item.

13. SURGE TEST

13.1 Block Diagram of EUT Test Setup

13.2 Test Standard

EN 55035, EN61000-4-5

13.3 Severity Levels and Performance Criterion

Severity Level:Line to Line, Level 2 at 1KV;Severity Level:Line to Earth, Level 3 at 2KV.

Performance criterion: B

13.4 Test Procedure

1) Set up the EUT and test generator as shown on section 11.1

2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.

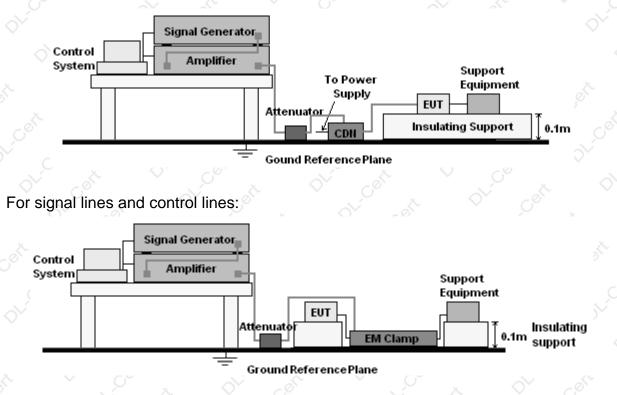
4) Different phase angles are done individually.

5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.

6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

13.5 Test Result

The EUT is powered by DC, no requirements for this item.



Report No.: DL-2020104171E

14. INJECTED CURRENTS SUSCEPTIBILITY TEST

14.1 Block Diagram of EUT Test Setup

For input a.c. / d.c. power port:

14.2 Test Standard

EN 55035, EN61000-4-6

14.3 Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz $\,\sim\,$ 80MHz

Performance criterion: A

14.4 Test Procedure

1) Set up the EUT, CDN and test generator as shown on section 12.1

2) Let EUT work in test mode and measure.

3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be

between 30 and 50 mm (where possible).

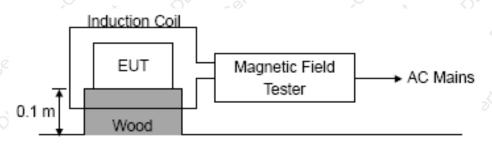
4) The disturbance signal described below is injected to EUT through CDN.

5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.

6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave

7) The rate of sweep shall not exceed 1.5×10^{-3} decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.


14.5 Test Result

The EUT is powered by DC, no requirements for this item.

15. MAGNETIC FIELD IMMUNITY TEST

15.1 Block Diagram of EUT Test Setup

Ground Reference Support

15.2 Test Standard

EN 55035, EN61000-4-8

15.3 Severity Levels and Performance Criterion

Severity Level 1: 1A/m Performance criterion: B

15.4 Test Procedure

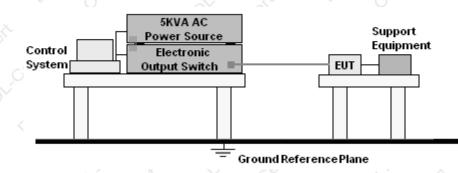
The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 13.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

15.5 Test Result

PASS

Please refer to the following page.

	MS Test Data	ı		
24.5	5°C 0	Humidit	y:	53%
DC 3	8.6V 🗸	Test Mod	ode: ON Mode	
Test specification	Units	Coil Orientation	Performanc Criterion	Result
× 0 [×]	Correction of the second se	Х	A V	PASS
¢ _1 <	A/m	Y C	A	PASS
Core	al at	Z	C A	PASS
	DC 3 Test	24.5°C DC 3.6V Test specification Units	DC 3.6V Test Mode Test specification Units Coil Orientation X X	24.5℃ Humidity: DC 3.6V Test Mode: Test specification Units Coil Orientation Performance Orientation X A


Test Report

Report No.: DL-2020104171E

16. VOLTAGE DIPS AND INTERRUPTIONS TEST

16.1 Block Diagram of EUT Test Setup

16.2 Test Standard

EN 55035, EN61000-4-11

16.3 Severity Levels and Performance Criterion

Input and Output AC Power Ports.

- ✓ Voltage Dips.
- ☑ Voltage Interruptions.

Environmental Phenomena	Test Specification	Units	Performance Criterion	
Voltage Dig	>95 0.5	% Reduction period	B O	
Voltage Dips	30 25	% Reduction period	o ^t C ^A	
Voltage Interruptions	>95 250	% Reduction period	C	

16.4 Test Procedure

- 1) Set up the EUT and test generator as shown on section 14.1
- 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- 4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
 - 5) Record any degradation of performance.

Report No.: DL-2020104171E

16.5Test Result

The EUT is powered by DC, no requirements for this item.

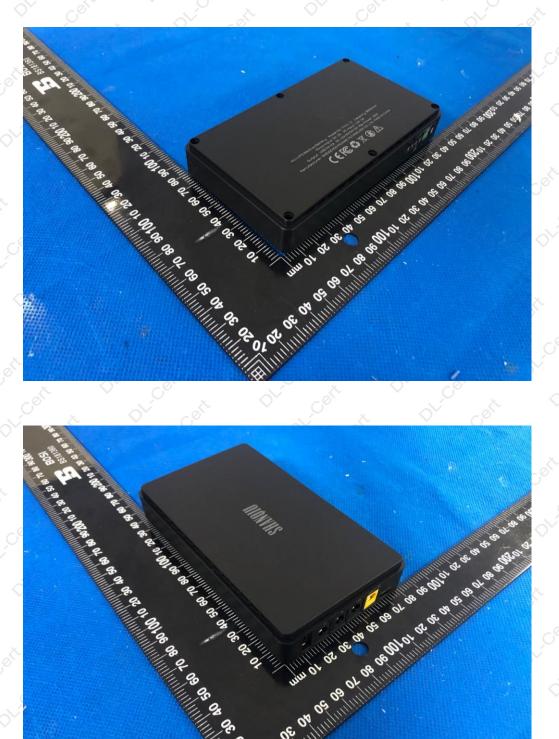
Report No.: DL-2020104171E

17. SETUP PHOTOGRAPHS

Web:www.dl-cert.com

0

OV.


Cot

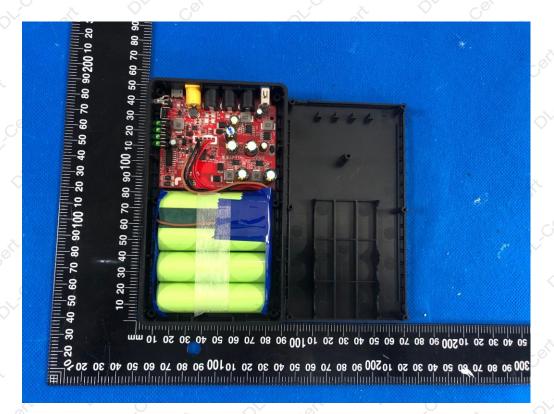
Ó

Report No.: DL-2020104171E

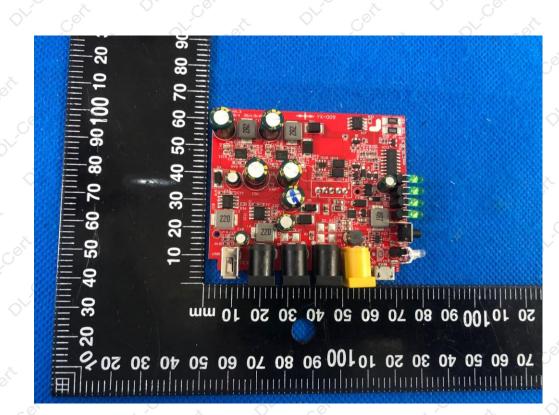
18. EUT PHOTOGRAPHS

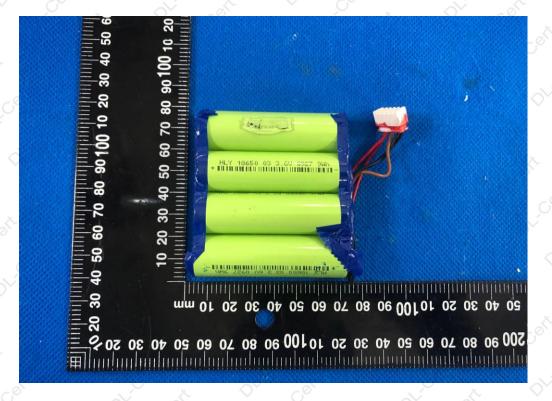
Test Report

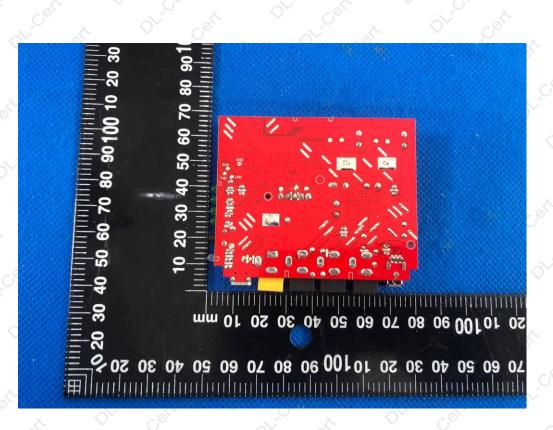
Tel: 400-688-3552


2: Q2 01 02

00 30


Web:www.dl-cert.com





Report No.: DL-2020104171E

******* END** OF REPORT ****

8 \$ 2 8 8 2 C E FCC 🛟 🕱 🛞 🛆 20 2 \$ 8 20 10500 a0 80 20 e0 20 40 30 50 10100 a0 80 20 e0 20 40 30 50 <math>=

9

E

9

2 8 8

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-2020104171E